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UNIFORM BRANCHED POLYMERS IN CONFINED GEOMETRIES 

S. G. Whittingtont and C. E. Soterod 
t University of Toronto, Toronto, Canada M5S 1Al 

$ University of Saskatchewan, Saskatoon, Canada S7N OW0 

ABSTRACT 

We review some rigorous results on the behaviour of branched polymers when con- 
fined in a slab and in a prism, and when interacting with a surface, and introduce 
some new results on the corresponding problem for vesicles. 

INTRODUCTION 

The characteristic feature of linear polymer molecules in dilute solution is their 
high degree of conformational freedom. When a polymer molecule is confined in 
some way, such as being restricted to a pore or slit, some conformations will be 
forbidden by the geometrical constraint. This leads to a decrease in the conforma- 
tional entropy of the molecule. For a linear polymer (modelled, for instance, as a 
self-avoiding walk on a lattice) this loss in conformational entropy has been carefully 
investigated using a variety of techniques [l, 2, 3, 41. 

This paper will be primarily concerned with uniform branched polymers. For 
example uniform stars are polymers with a single branch point of degree f and 
f branches, all of which have the same length, meeting at  this branch point, and 
uniform combs are polymers with t branch points of degree 3 arranged along a 
backbone with each of the 2t + 1 branches having the same length. In the same way 
that linear polymers can be modelled as self-avoiding walks (SAWS) on a lattice, 
such uniform branched polymers can be modelled as embeddings of graphs with each 
branch being a self-avoiding walk and with the branches being mutually avoiding. 
We can ask for the number of embeddings of such graphs as a function of the 
number of edges n in each branch, and we shall be particularly interested in the 
large n behaviour. We can also study the number of embeddings with a geometrical 
constraint and ask how the large n behaviour depends on this constraint. 

For any such uniform branched polymer type we can show that the loss in con- 
formational entropy, when the branched polymer is confined to lie in a slab, is the 
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196 WHITTINGTON AND SOTEROS 

same as the corresponding conformational entropy loss for a self-avoiding walk in  
the same slab [5]. However, if the branched polymer is confined to  a prism, the 
conforniational entropy loss is larger than the conformational entropy loss for a 
self-avoiding walk in  the same prism [6]. 

The theory of the adsorption of linear polymers, modelled by self-avoiding walks 
interacting with a surface, is relatively well understood [T, 81. In the infinite n 
limit there is a phase transition in the model [7] and the location of the p h s e  
transition has been estimated numerically [9, 10, 111. We show that for any fixed 
branched polymer type the temperature dependence of the free energy is identical 
t o  that for the self-avoiding walk [5, 121 so that, in particular, the phase transition 
corresponding to adsorption occurs at the same temperature. 

The corresponding treatment for linear and branched polymers interacting with 
a line in two dimensions shows that the thermodynamics is different in the two 
cases [5, 121. This result suggests that the codimension (the difference between 
the dimension of the space and the dimension of the embedded object) plays an 
important role. This has implications for vesicles interacting with a surface. It 
turns out that the thermodynamics of a vesicle (topologically equivalent to  a sphere) 
interacting with a surface is different from that of a membrane with free boundaries 
(topologically equivalent to  a disc) interacting with a surface. 

UNIFORM BRANCHED POLYMERS IN SLABS AND PRISMS 

In lattice models the primary quantity of intgrest is the number of ways in which a 
particular kind of graph can be embedded in a lattice. We shall be mainly concerned 
with the three dimensional case and consider the simple cubic lattice. Let c, be the 
number of ways in which an 7%-step SAW can be embedded in this lattice. For 
instance c1 = 6, c2 = 30, cg = 150, c4 = 5 x 150 - 6 x 4 = 726. The number of wallis 
rises exponentially with n so that [13] 

K is the reduced limiting conformational entropy per edge a.nd we shall often refer 
to K as the conformational entropy. The numerical estimate [14] of n is 1.544. 

Let the number of self-avoiding walks confined to  lie in a slab on the simple 
cubic lattice, i.e. between two parallel planes z = 0 and z = L ,  be c , ( L ) .  It can 
be shown [4] that limn-+oa n-'logc,(L) = K(L)  with K ( L )  < K ( L  + 1) < K and 
limL,, K(L) = K .  This implies that as the planes are brought closer together there 
is a successive loss in conformational entropy. 

We can specify a branched polymer type by specifying a graph with fixed home- 
omorphism type (e.g. a star, comb, tadpole, theta or dumbell). For this fixed 
homeomorphism type T let gn(T) be the number of embeddings of T in the simple 
cubic lattice with n edges in each branch. Then it can be shown [5] that 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
4
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1



BRANCHED POLYMERS IN CONFINED GEOMETRIES 197 

where N is the total number of edges in the embedding (e.g. for a comb with t 
'teeth' N = (2 t  + 1)n). Let gn(T, L )  be the corresponding number of embeddings in 
a slab of width L. Then, provided that L is large enough for one embedding of T to 
fit in the slab ( L  2 2 is certainly a sufficient condition), 

for all T. This means that all uniform branched polymer types lose the same amount 
of conformational entropy when confined in a slab, in the large n limit. The proofs 
of equations (2) and (3) rely on concatenation of unfolded SAWs in wedges. 

For a prism the situation is quite different. To be specific consider the prism 
which is the subset of the lattice between the pair of planes z = 0 and z = L1 

and the pair of planes y = 0 and y = L2. If we write cn(L1,L2) for the number of 
self-avoiding walks in this prism and gn(T, L1, L z )  for the number of embeddings of 
T in the prism then [6] 

and 
limsuPN-'lOglgn(T,Ll,L2) < "(Ll,LZ), ( 5 )  

n-cc 

for every T except that corresponding to  a self-avoiding walk, so that self-avoiding 
walks lose less conformational entropy than any other uniform branched polymer 
when confined in a prism. Physically this can he understood as being due to  the 
interference between the branches caused by the prism constraint. In a prism the 
branches are effectively constrained to  extend in a single direction while in a slab 
they can extend in two directions. The formal proof of equation ( 5 )  relies on a 
'pattern' theorem argument. 

ADSORPTION O F  UNIFORM BRANCHED POLYMERS 

A useful model for the adsorption of linear polymers is a self-avoiding walk in the 
simple cubic lattice interacting with a plane. Specifically we consider the number 
c n ( m )  of n-step SAWs which begin at the origin, are confined to the half-space z 2 0 
and have m + 1 vertices in the plane 2 = 0. The appropriate partition function is 
Zn(P) = C, cn(m)ePm and one can show [7] that the reduced limiting free energy 
per edge 

( 6 )  

exists. A(P) is continuous and convex hut is a non-analytic function of p so that 
the model exhibits a phase transition at  some Po > 0, corresponding to adsorption 

If we consider uniform embeddings of graphs of homeomorphism type T we can 

A(P) = n" lim n-l log Z n @ )  

[71. 

show [5] that the corresponding reduced limiting free energy 
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198 WHITTINGTON AND SOTEROS 

where gn(T, m) is the number of embeddings of T with n edges in each branch and 
m+ 1 vertices in the plane z = 0, is equal to  A(P) for every T. This implies that the 
temperature dependence of the free energy is the same as for SAWs and in particular 
the adsorption transition occurs at the same temperature. 

This turns out not to  be true in two dimensions [ 5 ] .  In this case we have a SAW 
on the square lattice interacting with a line and the free energy is again continuous, 
convex and non-analytic [ 7 ] .  For any fixed homeorphism type T we find that the 
free energy is independent of /3 and T for P 5 0 but for /3 > 0 we can show [5] that 
the free energy is less than or equal to  that of SAWs and the inequality becomes 
strict for 0 sufficiently large. Hence for an attractive interaction with a surface and 
sufficiently low temperature the thermodynamics depends on the type of branched 
polymer. The essential physical feature is that one branch when adsorbed in the 
surface can prevent other branches from reaching the surface in two dimensions. 
A branch, which is a one dimensional object, can leave and return to  the surface 
and create a region of the two dimensional space which is not accessible to  another 
branch. If the space is three dimensional this separation phenomenon does not 
occur. (This is essentially the Jordan curve theorem.) 

ADSORPTION OF VESICLES 

In the adsorption of branched polymers the crucial factor in determining whether 
the free energy is the same as for SAWs is the codimension of the space. Although 
for the polymer problem the two dimensional case is not of practical significance, an 
analogous effect occurs in the adsorption of vesicles at a surface, since a vesicle is a 
two dimensional object in a three dimensional space and the codimension is one. 

A convenient model for a vesicle is a connected set of plaquettes (elementary 
squares on the simple cubic lattice) homeomorphic to  a sphere [15, 161. Let v n  
be the number of embeddings of a vesicle with n plaquettes (i.e. with area n)  in 
the simple cubic lattice (e.g. 06 = 1 and v10 = 3).  It can be shown that 0 < 
limn+m n-l logv, = x < 00. If vn(m) is the number of vesicles with n plaquettes 
confined to  a half-space and having m plaquettes in z = 0 then the free energy is 
given by 

A(P) = n-03 lim n-l logQ,(P) (8) 

where Qn(P) is the partition function given by Qn(/3) = C, v,(m)eom. It can be 
shown by a concatenation argument that the limit in equation (8) exists for 0 < w. 
Similarly it is easy to  show that the free energy is convex and continuous. 

Since for /3 5 0, vn-qefl = v,(l)efl 5 Q,(p) 5 Qn(0) = vn,  then A(/?) = x for 
all p 5 0. Since for /3 > 0, eornmaZ < - Q,(P) 5 v,e@"maf, where mmar = n/2+ o ( n ) ,  
then p / 2  5 A(@) 5 x + P / 2 .  This establishes the existence of a phase transition 
since A(@) is a non-analytic function of p for some positive P .  

If we consider a membrane with free boundaries and homeomorphic to a disc 
and write d,(m) for the number of embeddings of a disc with rt plaquettes confined 
to  a half-space and having m plaquettes in z = 0 then a similar argument shows 
that liminf,,, n-l log C, d,(m)ePm 2 p. This implies that the thermodynamics 
must be different from that of a vesicle at sufficiently large p. 
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DISCUSSION 

We have reviewed some rigorous results on the behaviour of linear and uniform 
branched polymers with geometrical constraints, including the phenomenon of ad- 
sorption a t  a surface, in the large n limit. The behaviour for intermediate values of 
n is much less well understood and there is considerable scope both for computer 
investigations and experimental studies. For instance a Monte Carlo study of the 
entropy loss for uniform stars or combs in slabs and prisms seems to us to  be an 
appropriate next step. Similarly we are not aware of any experimental work on the 
adsorption of uniform branched polymers at a surface. 
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